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We investigate the propagation of partially coherent beams in spatially nonlocal nonlinear media with a
logarithmic type of nonlinearity. We derive analytical formulas for the evolution of the beam parameters and
conditions for the formation of nonlocal incoherent solitons.
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Incoherent solitons are partially coherent optical beams
propagating without changing their shape in materials with a
slow nonlinear response[1,2]. Such nonlinear materials re-
spond to the time averaged light intensity, which means that
even though the phase of the partially coherent light beam
fluctuates randomly, it still leads to a smooth light-induced
refractive index change and subsequent trapping of the beam
[3–9]. Incoherent solitons have been experimentally ob-
served almost solely in photorefractive media, which exhibit
a strong and sufficiently slow saturable Kerr-like nonlinear-
ity [1,2].

In inertial bulk Kerr media(2+1)-dimensional partially
coherent beams are still unstable and will either diffract or
self-focus unboundedly, depending on whether the power is
above a certain critical value[10–12]. Incoherence counter-
acts self-focusing and leads to an increase of the critical
power, but it cannot remove the collapse instability[10,11].
Consequently all experimental observations of incoherent
solitons have been in saturable materials, such as photore-
fractive materials[1] and liquid crystals[13].

Recently Peccantiet al. reported the first observation of
incoherent solitons and their interaction in nematic liquid
crystals[13]. Liquid crystals have a strong noninstantaneous
saturable Kerr-like nonlinearity associated with light-induced
molecular reorientation[14–17]. Their nonlinear response
time ranges from tens to hundreds of milliseconds[14],
which is sufficiently slow to allow for the formation of inco-
herent solitons. Apart from being inertial the nonlinear re-
sponse of liquid crystals is also inherentlyspatially nonlocal,
because the molecular reorientation induced by a light beam
in a particular place will affect the orientation of molecules
far beyond this point, due to the long-range character of their
interaction[15,18].

Spatially nonlocal nonlinearities are in fact an inherent
property of many physical systems, including matter waves,
nonlinear optics, and field theory. As such the nonlocal as-
pect of nonlinear interaction has attracted significant interest
recently [19,20]. Nonlocality can have profound conse-
quences on the properties of optical beams and soliton for-
mation, e.g., leading to collapse arrest of finite-size beams
[21], attraction and formation of bound states of dark soli-
tons [22], and modulational instability(MI ) in defocusing
materials[23,24]. A nonlocal nonlinearity may even describe
parametric wave mixing and solitons[25]. In the particular
case of liquid crystals certain aspects of their nonlocal non-
linear response have already been discussed in the literature,
including theoretical and experimental studies of the forma-
tion of multiple solitons[26,27] and accessible solitons[28]
as well as soliton interaction and MI[29].

Motivated by the documented unique dual inertial and
nonlocal character of the nonlinearity of liquid crystals and
the recent experimental observation of incoherent solitons in
this material, we analyze here the effect of nonlocality on the
propagation of partially coherent beams and formation of
incoherent solitons. Because such a problem is in general
analytically intractable we consider here the special case of a
nonlinearity with a logarithmic dependence of the refractive
index change on light intensity. This model has previously
been used to study incoherent beams in local media
[4,6,30–32] as well as fully coherent beams in nonlocal me-
dia [33]. Here we extend it to describesimultaneously inco-
herence and nonlocality. While being rather specific, the
logarithmic model is unique in the extent that it enables a
fully analytical treatment of the nonlinear beam propagation.
It has been successfully used to predict a variety of effects
associated with beam propagation and soliton formation
[31,34].

Propagation of a two-dimensional quasimonochromatic
partially coherent beam with the slowly varying amplitude
csrW ,zd is governed by the following nonlinear Schrödinger
equation:
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whererW=sx,yd, I = ucu2 denotes the light intensity,dnsId rep-
resents the light-induced refractive index change, and¹rW

2

=]2/]x2+]2/]y2.
In the following we use the mutual coherence function

GsrW1,rW2,zd to represent the coherence properties of the beam
[35]. This function describes the spatial correlation between
the field at pointsrW1 and rW2, and is defined as

GsrW1,rW2,zd = kcsrW1,zdc*srW2,zdl, s2d

where the angular brackets denote temporal or ensemble av-
eraging. In terms of the mutual coherence function the(time
averaged) intensity is given by

IsrW,zd = GsrW,rW,zd. s3d

We take the refractive index changedn to be the following
nonlocal function of light intensity:

dnsrW,Id = n2 lnFE RsrW − jWdIsjWddjWG , s4d

whereedrW=e−`
` e−`

` dxdyandRsrWd=Rsrd is the so-called non-
local response function, which depends only on the length of
its argument vectorr = urWu=Îx2+y2.

The model(4) is phenomenological and reflects the fact
that the refractive index change in a particular point in space
is determined not only by the wave intensity in this point, but
also by the intensity in a certain surrounding region given by
the width of the response function. The width of the nonlocal
response function therefore determines the degree of nonlo-
cality. In the special case whenRsrWd=dsrd this model de-
scribes a local nonlinear mediumdn=n2 ln I. A simplified
model may also be derived in the weakly nonlocal limit, in
which the width of the response function is finite, but small
compared to the beam width[20,36]. In the strongly nonlocal
limit, in which the response function is much broader than
the beam, the governing model becomes linear[20,33].

In general, the particular form of the response function is
determined by the specifics of the physical process respon-
sible for the nonlinearity of the optical medium. For instance,
it can be shown that for the reorientational nonlinearity of
liquid crystals and general diffusion type nonlinearities, the
nonlocal response can be approximated as

RsrWd ~ exps− r/sd, s5d

with s representing the extent of the nonlocality[25]. How-
ever, the majority of nonlocality-mediated effects appear to
be rather generic[20,23] and do not depend strongly on the
particular form of the nonlocal response function. Here, to
enable us to make an analytical description, we therefore
assume that the nonlocality is described by the normalized
Gaussian response function

Rsrd =
1

ps2expS−
x2 + y2

s2 D . s6d

While we consider here a nonlocally isotropic medium, the
model can be easily extended to include anisotropy of the

nonlocal properties, such as those caused by a directional
heat flow in thermal media[37].

The mutual coherence function satisfies the following
propagation equation[11,12]
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2 dG + fdnsrW1,Id − dnsrW2,IdgG = 0. s7d

Introducing the independent spatial variablespW andqW,

pW =
1

2
srW1 + rW2d, qW = rW1 − rW2, s8d

and using the specific form(4) of the nonlinearity transforms
the propagation equation into

i
] G

] z
+ ¹pW ·¹qWG + n2 ln1E RsrW1 − jWdIsjWddjW

E RsrW2 − jWdIsjWddjW2G = 0. s9d

In what follows we will consider the so-called Gaussian-
Schell model for the incident partially coherent beam[35].
We will also restrict our analysis to circular beams, i.e.,
beams having isotropic coherence properties. The extension
of the analysis to elliptical incoherent beams is straightfor-
ward. The mutual coherence function of the Gaussian-Schell
beam is expressed as

GspW ,qW,z= 0d = expS−
upW u2

r0
2 −

uqW u2

u0
2 D , s10d

where the initial effective coherence radiusu0 is given by the
relation

1/u0
2 = 1/rc

2 + 1/s4r0
2d. s11d

Here r0 is the initial radius andrc is the initial coherence
radius of the beam, respectively. Due to the logarithmic form
of the nonlinearity, the beam will maintain the Gaussian sta-
tistics during propagation and thus the modulus of the coher-
ence function will keep the form given by Eq.(10). We
therefore look for the solutions to Eq.(9) using the following
Gaussian ansatz:

GspW ,qW,zd = AszdexpS−
upW u2

r2szd
−

uqW u2

u2szd
+ ipW ·qWmszdD , s12d

where Aszd and mszd represent the amplitude and phase
variations of the coherence function, andrszd anduszd are its
radius and generalized coherence radius, respectively. The
input amplitude plays no role for the dynamics and thus we
use the initial conditionsAs0d=1, rs0d=r0, andus0d=u0. In
addition, we assumemsz=0d=0 so the coherence function
GspW ,qW ,zd satisfies the initial condition(10) at z=0. Inserting
the ansatz(12) into Eq. (9) leads to a set of ordinary differ-
ential equations for the parameters of the coherence function

du

dz
= um, s13d
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dr

dz
= rm, s14d

dA

dz
= − 2Am, s15d

dm

dz
=

4

u2r2 − m2 −
2n2

r2 + s2 . s16d

From the first two equations(13) and (14) we obtain the
relation

u/r = u0/r0, s17d

which shows that during the evolution the beam conserves its
coherence, defined as the number of speckles within the
beam diameter. Equations(14) and (15) lead to the power
conservation relationArszd2=r0

2. Interestingly, neither rela-
tion depends on whether or not the nonlinearity is local.

Combining Eq.(14), (16), and(17) we obtain the follow-
ing evolution equation for the beam radius:

d2r

dz2 − 4
r0

2

r3u0
2 + 2n2

r

r2 + s2 = 0. s18d

This equation describes the dynamics of the width of a par-
tially coherent beam with Gaussian statistics in a nonlocal
medium with a logarithmic nonlinear response. Takings
=0 we recover the expressions governing incoherent beams
in a local medium[31]. On the other hand, forrc→`, Eq.
(18) describes coherent beams in a nonlocal medium. It is
clear that the main role of the nonlocality is to effectively
weaken the influence of the nonlinearity on the propagation
of the beam. For very high degrees of nonlocality the non-
linear effects become negligible and the beam just diffracts.

Incoherent nonlocal soliton solutions are obtained from
Eq. (18) by settingrszd=r0. This gives the relation

n2 = S 2

rc
2 +

1

2r0
2DS1 +

s2

r0
2D . s19d

As expected, the existence of bright incoherent solitons, or
localized beams, is seen to require a focusing nonlocal non-
linearity with n2.0. Importantly, the relation(19) further
shows that trapping of a beam with a given initial widthr0
and coherence radiusrc in a nonlocal medium requires a
stronger nonlinearity(highern2) than in the case of a purely
local nonlinear response. This is again due to the fact that the
nonlocality effectively leads to a decrease of the strength of
focusing and subsequently to a weaker localization of the
beam. From Eq.(19), we find the expression for the radius of
the incoherent nonlocal soliton

r0
2 =

r̃0
2

2
F1 +

4s2

rc
2 +ÎS1 +

4s2

rc
2 D2

+
4s2

r̃0
2 G , s20d

where

r̃0
2 ; r0ss = 0d =

1

2n2 − 4/rc
2 s21d

denotes the radius of the incoherent soliton in a local me-
dium.

In Fig. 1(a) we plot the radius of incoherent nonlocal
solitons versus the degree of nonlocalitys for three values of
the coherence radiusrc. These plots clearly show that the
soliton width increases with nonlocality and becomes pro-
portional tos in the highly nonlocal regime. One can show
that for s / rc@1

r0 = 2r̃0
s

rc
. s22d

The degree of nonlocality is an inherent property of the me-
dium and as such difficult to control. However, one can eas-
ily vary the coherence properties of an incident beam. There-
fore we plot in Fig. 1(b) the soliton widthr0 versus the
coherence radiusrc for three values of the nonlocalitys.
Again, the increase of the soliton width with incoherence and
nonlocality is evident. Additionally, Fig. 1(b) shows that for
a given strength of nonlinearity there is a minimum coher-
ence radius, below which the incoherent soliton cannot exist.
The existence of such a threshold is well known from earlier
works on incoherent solitons in local media[4,6,31]. Inter-
estingly, it turns out that for a nonlocal nonlinearity, this
threshold is also determined solely by the strength of the
nonlinearity and the degree of coherence through the relation

n2 − 2/rc
2 . 0. s23d

To understand why this condition does not depend on the
beam size or the degree of nonlocality we recall that the
soliton is formed when the nonlinearity fully compensates
the transverse spreading of the beam, which is caused by
incoherence and diffraction. The former is due to the diffu-
sive character of the beam, while the latter is a direct conse-
quence of the finite size of the beam. For a very broad beam
the contribution to its expansion due to diffraction and non-
locality becomes negligible compared to that due to incoher-
ence. Hence, to achieve beam trapping the strength of the
nonlinear response of the medium should be high enough to
compensate at least the incoherence-induced beam spread-
ing. This, in fact, determines the threshold for soliton gen-
eration. As soon as this condition is satisfied a bright inco-

FIG. 1. Soliton widthsrd as a function of the degree of nonlo-
cality (a) and coherence radius(b). Heren2=1.8.
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herent soliton can exist, whose width will be determined by
the interplay of nonlinearity, coherence, diffraction, and non-
locality. Obviously, the resulting beam diameter will always
be larger than that of the local soliton of the same degree of
coherence.

More physical insight into the competition between dif-
fraction, nonlinearity, nonlocality, and incoherence can be
obtained by an effective particle analogy. Assuming that
sdr /dzdsz=0d=0, and integrating Eq.(18) once, one obtains
a classical-mechanical equation

sdr/dzd2 + Psrd = 0, s24d

describing an effective particler with kinetic energy
sdr /dzd2 moving in the potentialPsrd, given by

Psrd =
4

u0
2Sr0

2

r2 − 1D + 2n2 lnSs2 + r2

s2 + r0
2D . s25d

The asymmetric potential is depicted in Fig. 2 for a beam
with effective coherence radiusu0=1 moving in a focusing
logarithmic nonlinear medium withn2=1.8. As nonlocality
increases the width of the potential also increases and its
minimum becomes less pronounced.

Stationary soliton solutions with constant beamwidth cor-
respond to the effective particle being located at the bottom
of the potential well. For initial beam parameters different
from the soliton solution the beam width(and coherence
radius and peak intensity) will undergo periodic oscillations,
corresponding to the effective particle oscillating in the bot-
tom of the potential well. As the profile of the potential well

changes with highers one can expect that the amplitude and
period of beam oscillations will drastically increase for a
high degree of nonlocality. In the limit of the small ampli-
tude oscillations, their form can be obtained analytically in
the form of Jacobi elliptical function, in a way analogous to
that discussed in[31].

This is indeed the case, as illustrated in Fig. 3 where we
show the nonstationary propagation of the partially coherent
beam in a nonlinear medium. The initial parameters are cho-
sen such thatr0=1.0, rc=1.15, andn2=1. In the graph we
plot the beam radius as a function of the propagation dis-
tance in the cases of local(dotted line) and nonlocal(solid
line) nonlinearity. The increased amplitude and period of os-
cillations induced by the nonlocality is evident.

In conclusion, we analyzed the propagation of incoherent
optical beams with Gaussian statistics in a nonlinear nonlo-
cal medium. Considering a special case of a logarithmic type
of nonlinearity and Gaussian nonlocal response, we obtained
analytical formulas governing all relevant parameters of the
beam. We showed that nonlocality results in increased diam-
eter of the incoherent solitons. When the initial parameters of
the beam differ from the exact nonlocal soliton solution, the
beam experiences periodic expansions and contractions
whose period increases with nonlocality.
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