PHYSICAL REVIEW E 70, 036617(2004)
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We investigate the propagation of partially coherent beams in spatially nonlocal nonlinear media with a
logarithmic type of nonlinearity. We derive analytical formulas for the evolution of the beam parameters and
conditions for the formation of nonlocal incoherent solitons.
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Incoherent solitons are partially coherent optical beams Spatially nonlocal nonlinearities are in fact an inherent
propagating without changing their shape in materials with groperty of many physical systems, including matter waves,
slow nonlinear responsi,2]. Such nonlinear materials re- nonlinear optics, and field theory. As such the nonlocal as-
spond to the time averaged light intensity, which means thagect of nonlinear interaction has attracted significant interest
even though the phase of the partially coherent light beanfecently [19,20. Nonlocality can have profound conse-
fluctuates randomly, it still leads to a smooth light-inducedquences on the properties of optical beams and soliton for-
refractive index change and subsequent trapping of the beamation, e.g., leading to collapse arrest of finite-size beams
[3-9). Incoherent solitons have been experimentally ob{21], attraction and formation of bound states of dark soli-
served almost solely in photorefractive media, which exhibittons [22], and modulational instabilityMI) in defocusing
a strong and sufficiently slow saturable Kerr-like nonlinear-materials|23,24. A nonlocal nonlinearity may even describe
ity [1,2]. parametric wave mixing and solitorig5]. In the particular

In inertial bulk Kerr media(2+1)-dimensional partially case of liquid crystals certain aspects of their nonlocal non-
coherent beams are still unstable and will either diffract oninear response have already been discussed in the literature,
self-focus unboundedly, depending on whether the power igcluding theoretical and experimental studies of the forma-
above a certain critical valugl0-13. Incoherence counter- tjon of multiple solitons[26,27 and accessible solitorj&8]
acts self-focusing and leads to an increase of the criticahs well as soliton interaction and NI29].
power, but it cannot remove the collapse instabifitp,11. Motivated by the documented unique dual inertial and
Consequently all experimental observations of incoherentonlocal character of the nonlinearity of liquid crystals and
solitons have been in saturable materials, such as photorghe recent experimental observation of incoherent solitons in
fractive material1] and liquid crystalq13]. this material, we analyze here the effect of nonlocality on the

Recently Peccantt al. reported the first observation of propagation of partially coherent beams and formation of
incoherent solitons and their interaction in nematic liquidincoherent solitons. Because such a problem is in general
crystals[13]. Liquid crystals have a strong noninstantaneousanalytically intractable we consider here the special case of a
saturable Kerr-like nonlinearity associated with light-inducednonlinearity with a logarithmic dependence of the refractive
molecular reorientatiorf14-17. Their nonlinear response index change on light intensity. This model has previously
time ranges from tens to hundreds of millisecor{d4], been used to study incoherent beams in local media
which is sufficiently slow to allow for the formation of inco- [4,6,30-32 as well as fully coherent beams in nonlocal me-
herent solitons. Apart from being inertial the nonlinear re-dia [33]. Here we extend it to descrilsmultaneously inco-
sponse of liquid crystals is also inherensyatially nonlocal  herence and nonlocalityWhile being rather specific, the
because the molecular reorientation induced by a light beamdgarithmic model is unique in the extent that it enables a
in a particular place will affect the orientation of molecules fully analytical treatment of the nonlinear beam propagation.
far beyond this point, due to the long-range character of theirt has been successfully used to predict a variety of effects
interaction[15,18. associated with beam propagation and soliton formation

[31,34.
Propagation of a two-dimensional quasimonochromatic
*On sabbatical leave from the Department of Mathematical Scipartially coherent beam with the slowly varying amplitude
ences and Technology, Agricultural University of Norway, P. O. ¥(r,2) is governed by the following nonlinear Schrodinger
Box 5003, N-1432 As, Norway. equation:
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1_, nonlocal properties, such as those caused by a directional
G on(y=0, (1) nheat flow in thermal medig37].
The mutual coherence function satisfies the following

wherer=(x,y), | =|¢{? denotes the light intensityin(l) rep-  propagation equatiofi1,12
resents the light-induced refractive index change, &dd r
=P+ 7oy | 17+ 2(V2 V2 + [an(F 1) - on(FDIN =0, (7)

In the following we use the mutual coherence function dz 2 1 2
I'(ry,,,2) to represent the coherence properties of the bea
[35]. This function describes the spatial correlation betwee
the field at points’; andr,, and is defined as 1.

(7 22) = (U 29 (72), @ Parrh aznre ®

where the angular brackets denote temporal or ensemble aynd using the specific forig#) of the nonlinearity transforms
eraging. In terms of the mutual coherence function(tmee  the propagation equation into
averageglintensity is given by

v
Jdz

Tntroducing the independent spatial variabfeandd,

(7.2 =T, @ . | re-dnco
We take the refractive index change to be the following i=>+ Vs Vgl +npIn| ——————— |I'=0. (9)
nonlocalfunction of light intensity: f R(r, — H1(Hdé
on(r,1) =n, |n{j R(F - §)|(§)d§] (4) In what follows we will consider the so-called Gaussian-

Schell model for the incident partially coherent begss).

where[di=[7_[” dxdyandR(r)=R(r) is the so-called non- We will also restrict our analysis to circular beams, i.e.,
local response function, which depends only on the length opeams having isotropic coherence properties. The extension
its argument vector = |f]= \x2+y?. of the analysis to elliptical incoherent beams is straightfor-

The model(4) is phenomenological and reflects the factward. The mutual coherence function of the Gaussian-Schell
that the refractive index change in a particular point in spac#eam is expressed as
is determined not only by the wave intensity in this point, but P
also by the intensity in a certain surrounding region given by T'(p,G,2=0) = exp(— ﬂ _ ﬂ) (10)

. . . L §) 2 1

the width of the response function. The width of the nonlocal 5 6
response function therefore determines the degree of nonlo- o . o
cality. In the special case wheR(f)=4(r) this model de- wher_e the initial effective coherence radigsis given by the
scribes a local nonlinear mediudn=n, In I. A simplified  refation
model may also be derived in the weakly nonlocal limit, in a2 2
which the width of the response function is finite, but small 1/0‘2’ =1irc + 1(4po). (11)
compared to the beam widfR0,36. In the strongly nonlocal  Here p, is the initial radius and. is the initial coherence
limit, in which the response function is much broader thanradius of the beam, respectively. Due to the logarithmic form
the beam, the governing model becomes lin@ar33. of the nonlinearity, the beam will maintain the Gaussian sta-

In general, the particular form of the response function isiistics during propagation and thus the modulus of the coher-
determined by the specifics of the physical process resporence function will keep the form given by E@l0). We

sible for the nonlinearity of the optical medium. For instance therefore look for the solutions to E¢®) using the following
it can be shown that for the reorientational nonlinearity ofGaussian ansatz:

liquid crystals and general diffusion type nonlinearities, the

nonlocal response can be approximated as . .
P PP I'(p.6,2 :A<z>exp<— 2o 2y P -QM(Z)>, (12)
R(F) « exp(- r/o), (5) (2 (2

with o representing the extent of the nonlocali®6]. How- ~ where A(z) and w(2) represent the amplitude and phase
ever, the majority of nonlocality-mediated effects appear tovariations of the coherence function, go@) and(z) are its
be rather generi§20,23 and do not depend strongly on the radius and generalized coherence radius, respectively. The
particular form of the nonlocal response function. Here, toinput amplitude plays no role for the dynamics and thus we
enable us to make an analytical description, we thereforese the initial condition#\(0)=1, p(0)=pg, and 6(0)=6,. In
assume that the nonlocality is described by the normalizedddition, we assumg(z=0)=0 so the coherence function
Gaussian response function I'(p,q,2) satisfies the initial conditioi10) at z=0. Inserting
1 X2+ 2 the ansatz12) into Eq.(9) leads to a set of ordinary differ-
R(r) = Fex;{— 2 ) (6)  ential equations for the parameters of the coherence function

While we consider here a nonlocally isotropic medium, the a9 = O, (13)

model can be easily extended to include anisotropy of the dz
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du_ 4 5 2np

dz ¢p? H P+ o

From the first two equation&l3) and(14) we obtain the
relation

(1 6) 0 ) 1 . )
0 10 20 30 40 0 2 4 6 8 10
(a) Nonlocality & (b) Coherence radius 7,

FIG. 1. Soliton width(p) as a function of the degree of nonlo-
cality (a) and coherence radiyb). Heren,=1.8.

6/p = 0o/ po, (17)
~ 1
which shows that during the evolution the beam conserves its po= polo=0)= o i (21)
coherence, defined as the number of speckles within the 2 ¢
beam diameter. Equatiorid4) and (15) lead to the power denotes the radius of the incoherent soliton in a local me-
conservation relatiomp(z)zng. Interestingly, neither rela- dium.

tion depends on whether or not the nonlinearity is local. In Fig. 1(a@ we plot the radius of incoherent nonlocal
Combining Eq.(14), (16), and(17) we obtain the follow-  solitons versus the degree of nonlocalityor three values of
ing evolution equation for the beam radius: the coherence radius. These plots clearly show that the

soliton width increases with nonlocality and becomes pro-

d?p pS p portional too in the highly nonlocal regime. One can show
2 Yept M 20 (18)  that foro/re>1
This equation describes the dynamics of the width of a par- po= Zborg. (22

tially coherent beam with Gaussian statistics in a nonlocal c

medium with a logarithmic nonlinear response. Taking The degree of nonlocality is an inherent property of the me-
=0 we recover the expressions governing incoherent beamgym and as such difficult to control. However, one can eas-
in a local medium31]. On the other hand, for.—<, EQ.  jly vary the coherence properties of an incident beam. There-
(18) describes coherent beams in a nonlocal medium. It i$gre we plot in Fig. 1b) the soliton widthp, versus the
clear that the main role of the nonlocality is to effectively cgherence radius, for three values of the nonlocality-
weaken the influence of the nonlinearity on the propagatiomgain, the increase of the soliton width with incoherence and
of the beam. For very high degrees of nonlocality the nonygp|ocality is evident. Additionally, Fig.(b) shows that for
linear effects become negligible and the beam just diffractsg given strength of nonlinearity there is a minimum coher-
Incoherent nonlocal soliton solutions are obtained fromence radius, below which the incoherent soliton cannot exist.

Eq. (18) by settingp(z)=po. This gives the relation The existence of such a threshold is well known from earlier
works on incoherent solitons in local medi,6,3]. Inter-
n, = (E+i><1+f) (19) estingly, it turns out that for a nonlocal nonlinearity, this
2 2 2p5 05/ threshold is also determined solely by the strength of the

nonlinearity and the degree of coherence through the relation
As expected, the existence of bright incoherent solitons, or 5
localized beams, is seen to require a focusing nonlocal non- np—2/r;>0. (23)

linearity with n,>0. Importantly, the relation19) further 14 \ngerstand why this condition does not depend on the
shows that trapping of a beam with a given initial Widil  peam size or the degree of nonlocality we recall that the
and coherence radiug in a nonlocal medium requires a gqjiton is formed when the nonlinearity fully compensates
stronger nonlinearityhighern,) than in the case of a purely e transverse spreading of the beam, which is caused by
local nonlinear response. This is again due to the fact that thg, -oherence and diffraction. The former is due to the diffu-
nonlocality effectively leads to a decrease of the strength ofjye character of the beam, while the latter is a direct conse-
focusing and subsequently to a weaker localization of the, ence of the finite size of the beam. For a very broad beam
beam. From Eq(19), we find the expression for the radius of o contribution to its expansion due to diffraction and non-
the incoherent nonlocal soliton locality becomes negligible compared to that due to incoher-
=2 452 22\ 7 a2 enc;e_. Hence, to achlfeve beam trapping the s_trength of the
2_Pol 4 BT, (1+_> i (20) nonlinear response of the _med|um shOL_JId be high enough to
Po 2 rg r? 2| compensate at least the incoherence-induced beam spread-
ing. This, in fact, determines the threshold for soliton gen-
where eration. As soon as this condition is satisfied a bright inco-

c Po
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FIG. 2. PotentialP(p) in a focusing logarithmic nonlinear me-
dium (n,=1.8) for different degrees of nonlocality. The initial
beam parameters afig=1 andpy=1.

FIG. 3. lllustration of nonstationary propagation of a partially
coherent beam in a logarithmic nonlinear nonlocal medium. The
nonlocality parameter varies as=0 (dotted ling and o=10 (solid

. . . . . line).
herent soliton can exist, whose width will be determined by )

the interplay of nonlinearity, coherence, diffraction, and non-

locality. Obviously, the resulting beam diameter will always changes with highes one can expect that the amplitude and

be larger than that of the local soliton of the same degree aperiod of beam oscillations will drastically increase for a

coherence. high degree of nonlocality. In the limit of the small ampli-
More physical insight into the competition between dif- tude oscillations, their form can be obtained analytically in

fraction, nonlinearity, nonlocality, and incoherence can behe form of Jacobi elliptical function, in a way analogous to

obtained by an effective particle analogy. Assuming thathat discussed ifi31].

(dp/d2)(z=0)=0, and integrating Eq.18) once, one obtains This is indeed the case, as illustrated in Fig. 3 where we
a classical-mechanical equation show the nonstationary propagation of the partially coherent
) _ beam in a nonlinear medium. The initial parameters are cho-
(dpld2)"+ P(p) =0, (24 sen such thapy=1.0, r,=1.15, andn,=1. In the graph we
describing an effective particlep with kinetic energy Plot the beam radius as a function of the propagation dis-
(dp/d2)2 moving in the potentiaP(p), given by tance in 'ghe cases of _Iocaﬂotted ling .and nonlocal(_solld
5 ) line) nonlinearity. The increased amplitude and period of os-
P(p) = 4(po_ o +p cillations induced by the nonlocality is evident.
(p)—e2 5—1]+2n,1In 1) (25) | lusi vzed ; .
o\ p +p n conclusion, we analyzed the propagation of incoherent
) o ) o optical beams with Gaussian statistics in a nonlinear nonlo-
The asymmetric potential is depicted in Fig. 2 for a beamea| medium. Considering a special case of a logarithmic type
with effective coherence radiug=1 moving in a focusing o nonlinearity and Gaussian nonlocal response, we obtained
logarithmic nonlinear medium witim,=1.8. As nonlocality  analytical formulas governing all relevant parameters of the
increases the width of the potential also increases and if§eam. We showed that nonlocality results in increased diam-
minimum becomes less pronounced. _ eter of the incoherent solitons. When the initial parameters of
Stationary soliton solutions with constant beamwidth cor-tne peam differ from the exact nonlocal soliton solution, the
respond to the effective particle being located at the bottonyeam experiences periodic expansions and contractions
of the potential well. For initial beam parameters different,,nose period increases with nonlocality.
from the soliton solution the beam widtfand coherence
radius and peak intensitwill undergo periodic oscillations, W.K. was supported by the Australian Research Council.
corresponding to the effective particle oscillating in the bot-J.W. acknowledges support from The Research Council of
tom of the potential well. As the profile of the potential well Norway under Grant No. 153405/432.
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